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Gradient descent

minimizegerr  f(03)
where f(8) is convex and differentiable

Algorithm 4.1 Gradient descent

fort=0,1,---:

B =B — V(8

where i, step size / learning rate
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A proximal point of view of GD

8- B e
Mt .
(B8 +(Vf(B').8-8"

B = argrrgn{f(ﬂt) +(VF(B").8 - B + ;HB - W}
ot

linear approximation ‘ﬂ_“
proximal term

e When 1 is small, B! tends to stay close to 3
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Proximal operator

If we define the proximal operator
prox (b) i= axgmin {3 118~ b|* + h(B) |
for any convex function h, then one can write
6t+1 — prox,, , (5t>
where f¢(8) := f(Bt) + (Vf(B1),8 — Br)
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Why consider proximal operators?

prox (b) += axgmin {3 118~ b|* + h(B) |

e It is well-defined under very general conditions (including
nonsmooth convex functions)

e The operator can be evaluated efficiently for many widely used
functions (in particular, regularizers)

e This abstraction is conceptually and mathematically simple, and
covers many well-known optimization algorithms
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Example: characteristic functions

400 ﬁ ,,,,,,,,,,,,,,,,,,,,

1 t1|2
—5 e - +c
2188

e If h is characteristic function

then

prox;, (b) = arg %HICl |B —bll2  (Euclidean projection)
€
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Example: /; norm

1 : 1
5B =B +c ——1B-B?+¢
2% T

o If h(8) = |81, then
proxy, (b) = st (b; A)

where soft-thresholding 15 (+) is applied in an entry-wise manner.
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Example: /5 norm

prox;, (b) = argmﬂin {; I8 — bH2 + h(,@)}
o I h(8) = [|B] then
A
proxyp(b) = (1 — |b||>+ b

where ay := max{a,0}. This is called block soft thresholding.
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Example: log barrier

1
prox (b) += axgmin {3 118~ b|* + h(B) |

o If h(B) = —>F_, log f3;, then

bi + /b? + 4\

(proxyp,(b))i = 9
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Nonexpansiveness of proximal operators

/’_-\\
1 4
S LA
l‘ \
\\ ‘\\‘ C \\

\\‘/‘.\PC (8%) \
\ \ N 1
B ~ /

0, ifgecC
oo else
projection P¢ onto C, which is nonexpansive:

Recall that when h(83) = { , prox,(3) is Euclidean

1Pe(BY) = Pe(B2)| < (I8 — 87|
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Nonexpansiveness of proximal operators

Nonexpansiveness is a property for general prox,(-)

1 o
- §||ﬂ*ﬁ2\\2+02

1 .
—gHﬁ—ﬂlHZ +a

Fact 4.1 (Nonexpansiveness)

Iprox;, (8') — prox,,(8%) < 8" — 8|

e In some sense, proximal operator behaves like projection
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Proof of nonexpansiveness

Let 2! = prox,(B') and 22 = prox;(3?). Subgradient
characterizations of z!' and 22 read

Bl — 2zt € Oh(z') and B% — 2% € Oh(2?)

The claim would follow if

(B =BT (2! —2%) > ||zt — 2%|* (together with Cauchy-Schwarz)

= B -2 -p+) (-2 20
h(z%) > h(z!) + (B — 2!, 22— 21)
———
€0h(=z1)
h(zh) > h(2?%) + (8% — 22, 2! — 2?)
———
€0h(2?)

f—

Lasso: algorithms and extensions

414



Proximal gradient methods
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Optimizing composite functions

N 1
(Lasso) minimizegers 5[] X8 — ylI? + A8l = F(8) + 9(8)
——
\—/_/ L
=F(8) =9(8)
where f(3) is differentiable, and g(3) is non-smooth

e Since g(3) is non-differentiable, we cannot run vanilla gradient
descent
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Proximal gradient methods

One strategy: replace f(3) with linear approximation, and compute
the proximal solution

1
gt = arguin {189 + (V18,6 — ') + o(8) + 5 16— I
The optimality condition reads
= vf(ﬁt) +ag(ﬁt+1) + i (BtJrl _Bt>
Mt
which is equivalent to optimality condition of
. 1 2
gt = argmin {9(8) + 58~ (8"~ w78}
= prox,,, (ﬂt - utVf(ﬁt)>
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Proximal gradient methods

Alternate between gradient updates on f and proximal minimization
on g

Algorithm 4.2 Proximal gradient methods
fort=0,1,---:

B = prox,,,, (8" - mVF(8")

where i;: step size / learning rate
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Projected gradient methods

0, ifge C
When ¢(8) = convex IS characteristic function:
o0, else

B =Pe (B — mVf(B))
= argréleircl Hﬁ — (B — ,utVf(,Bt))H

This is a first-order method to solve the constrained optimization

minimizeg  f(8)
s.t. BecC
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Proximal gradient methods for lasso

For lasso: f(B) = || X8 — yl|*> and g(8) = A||B||1,

prox,(8) = argmin { 5116~ bl + Al |
= gt (67 )\>

— BT =y (B - X (XB —y); )

(iterative soft thresholding)
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Proximal gradient methods for group lasso

Sometimes variables have a natural group structure, and it is desirable to set
all variables within a group to be zero (or nonzero) simultaneously

1 9 k
(group lasso) S| XB—yl*+ A} I8l

=f(B) =9(8)

B1
where 3; € RP/* and B = |
Br

proxg(,@) = ¢bst (/87 )‘) = [(1 B ||ﬂ)\||> ﬂj]
J +

1<i<k
= B =y (B — X T (XB —y); )

Lasso: algorithms and extensions 4-21



Proximal gradient methods for elastic net

Lasso does not handle highly correlated variables well: if there is a
group of highly correlated variables, lasso often picks one from the
group and ignore the rest.

e Sometimes we make a compromise between lasso and /5 penalties

(elastic net) %HX,B — yH2 + A {Hﬂ“l + (V/Q)HIBH%}

=1(8) =g(B)
PFOX,\g(IB) 1+)\ st (B A)
= A= w T s (B = m X T(XB' = y)s )

e soft thresholding followed by multiplicative shrinkage
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Interpretation: majorization-minimization

(8.8 = £(8) + (V8.8 - 8') + 518~ B
Kt

linearization trust region penalty

majorizes f(8) if 0 < iy < 7, where L is Lipschitz constant® of Vf()

Proximal gradient descent is a majorization-minimization algorithm

B = argmin {£.(8.8) +9(8)}

N majorization
minimization

'This means |V f(3) — Vf(b)|| < L||3 — b for all 3 and b
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Convergence rate of proximal gradient methods

Theorem 4.2 (fixed step size; Nesterov '07)

Suppose g is convex, and f is differentiable and convex whose
gradient has Lipschitz constant L. If yy = p € (0,1/L), then

£(8)+ 98" — min {8) +9(8)} < 07)

e Step size requires an upper bound on L
e May prefer backtracking line search to fixed step size

e Question: can we further improve the convergence rate?
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Nesterov’s accelerated gradient methods

Lasso: algorithms and extensions

4-25



Nesterov’s accelerated method

Problem of gradient descent: zigzagging
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Nesterov’s idea: include a momentum term to avoid overshooting
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Nesterov’s accelerated method

Nesterov’s idea: include a momentum term to avoid overshooting

Bt = Prox,,, (btfl —wVf (btfl))
b = B4+ (ﬁt — Bt_1> (extrapolation)

[ ——
momentum term

e A simple (but mysterious) choice of extrapolation parameter

t—1

=

e Fixed size u; = pu € (0,1/L) or backtracking line search

e Same computational cost per iteration as proximal gradient
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Convergence rate of Nesterov’s accelerated method

Theorem 4.3 (Nesterov '83, Nesterov '07)

Suppose f is differentiable and convex and g is convex. If one takes

o = ;—; and a fixed step size y = p € (0,1/L), then

589 + (8~ mpn (58) + 99} < 0 (3)

In general, this rate cannot be improved if one only uses gradient
information!
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Numerical experiments (for lasso)
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